

Po-Lun Ma

October 1, 2020

Aerosol effect is a major source of uncertainty

- CMIP3-5: Stronger aerosol effects lead to weaker total forcing and higher climate sensitivity
- CMIP6: New (no?) relationship

Increase resolution improves agreement between model and observational estimates of ACI

Ma et al. (2015)

Terai et al. (2020)

- Increasing resolution improves small-scale meteorological features critical for aerosolcloud interaction, increasing the agreement of cloud and precipitation susceptibility with observations even though the same physical parameterizations are used.
- Weaker ERFaci is caused by a combination of weaker increase in LWP in non-raining clouds and a smaller fraction of raining clouds in UPCAM

EAGLES

3 model development themes (Aerosol, Clouds, Computation)
1 cross-cutting activity (Testbeds)
Deliver improved representation to run on DOE's GPU-based computers

Vision: To increase confidence in and understanding of the role of aerosols and aerosol-cloud interactions in the evolution of the Earth system using new modeling techniques that are scientifically robust and computationally efficient for global convection-permitting simulations

Activation emulation Silva et al.

Use physics to regulate the emulator Silva et al.

Physics regularization: reducing emulator complexity Silva et al.

New DNN-based activation in E3SM runs smoothly Silva et al.

Some new problems indicates (hidden) issues in the emulator

Silva et al.

Column integrated droplet number concentration (x10⁹)

ERFaci

Software considerations when implementing emulators in E3SM

We use Fortran keras bridge library

Singh et al.

- Easy: Provide a text file, link the library, write an interface routine
- Flexible: do not need to recompile the whole E3SM after replacing the emulator
- Numerical considerations
 - Clipping (input)
 - Assumptions made in other parts of the model: updraft velocity
 - Inconsistent bounds: minimum hygroscopicity in the emulator (10⁻⁴) vs in E3SM (10⁻¹⁰)
 - Clipping (output)
 - Fraction between 0 and 1
 - Sampling of training data
 - Comprehensive (Latin Hypercube, MCMC) vs. realistic multivariate PDF
- Computational cost
 - DNN on CPU machines is slightly cheaper than the default E3SM with ARG

Autoconversion emulation Pressel et al.

Objective

 To develop robust training data sets to be used for machine learning emulation of autoconversion rates for a diverse set of aerosol conditions and boundary layer cloud regimes

Approach

- Anew computationally efficient LES model, <u>Predicting IN</u>teractions of <u>A</u>erosol and <u>C</u>louds in <u>L</u>arge <u>E</u>ddy <u>S</u>imulation (<u>PINACLES</u>)
- Coupled with spectral bin microphysics (SBM) to explicitly predict autoconversion rates
- Perform a very large LES ensemble for a wide range of aerosol conditions and cloud types

Results

- A proof-of-concept exercise builds a reasonable emulator
- In addition to traditional variables, meteorological variables play a significant role in autoconversion rates and need to be included in the training

Summary

- Successful development of physically regularized DNN that outperforms all existing parameterizations
- Successful implementation of DNN-based parameterization in E3SM with ample flexibility. Computational cost is slightly reduced
- Interface routine has some numerical considerations needed for both the DNN emulator and for the E3SM
- Climate simulations are stable and reasonable, though we see new biases in droplet numbers, pointing to DNN's relatively large bias in low activation scenarios.

Lessons learned

- Tools are available for inserting a DNN-based parameterization (python-based) in a climate model (FORTRAN-based), but interface routine needs to be designed carefully.
- Emulator development requires close collaboration between domain scientists and data scientists. E3SM with the DNN-based parameterization produces reasonable climate simulations, but new biases were produced. Some iterations between emulator-building (parameterization development) and climate modeling are needed.
- What are we learning? Statistical characterization of model states and process rates or real-world physics?

Thank you.